Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Hua Sun* and Xin Feng

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's
Republic of China

Correspondence e-mail:
sun.jhtjnu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.063$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2-aminonaphthalene-1-sulfonato-кO)-bis(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ cobalt(II)

The title molecule, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$, lies on a crystallographic twofold axis with the $\mathrm{Co}^{\mathrm{II}}$ atom coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two sulfonate O atoms from two 2-aminonaph-thalene-1-sulfonate ligands in a distorted octahedral geometry. In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the mononuclear units into a three-dimensional network. There is also a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and an intramolecular $\pi-\pi$ stacking interaction.

Comment

The design and synthesis of metal-organic frameworks (MOFs) by the mixed-ligand strategy is currently an active research area due to their intriguing structural architectures as well as their potential applications in catalysis, gas adsorption, and separation (Kitagawa et al., 2004). The mixed-ligand strategy has been proven to be an effective method for the preparation of metal-sulfonate complexes (Cai, Chen, Liao, Feng et al., 2001; Cai, Chen, Liao, Yao et al., 2001; Chen et al., 2002; Dai et al., 2006).

(I)

As part of our further investigation of the coordination chemistry of aromatic sulfonate anions, we report here the crystal structure of a $\mathrm{Co}^{\mathrm{II}}$ complex, (I), with mixed ligands of 1,10-phenanthroline and 2-aminonaphthalene-1-sulfonate. The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The $\mathrm{Co}^{\mathrm{II}}$ atom exhibits a distorted octahedral coordination geometry involving four N -atom donors from two chelating 1,10phenanthroline ligands, and two sulfonate O atoms from two

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Only H atoms involved in hydrogen bonds have been included. The short-dashed lines indicate intramolecular hydrogen bonds and the long-dashed lines indicate $\pi-\pi$ stacking interactions [symmetry code: (A) $y, x,-z$].
monodentate 2 -aminonaphthalene-1-sulfonate ligands. The molecule lies on a crystallographic twofold axis.

There is a single intramolecular $\pi-\pi$ stacking interaction between the naphthalene ring system and the quinoline ring system of the 1,10 -phenanthroline ligand, with a centroidcentroid distance of 3.670 (1) \AA and a dihedral angle between the rings of $5.20(4)^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link complex molecules, forming a three-dimensional network (Table 2 and Fig. 2).

Experimental

The title complex was synthesized by dissolving a reaction mixture of $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad(99.6 \mathrm{mg}, \quad 0.4 \mathrm{mmol}), \quad 1,10$-phenanthroline ($39.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-aminonaphthalene-1-sulfonic acid (89.3 mg , $0.4 \mathrm{mmol}), \mathrm{NaOH}(0.6 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ in a 23 ml Teflonlined autoclave under autogenous pressure at 413 K for 2 d . After the reaction, the mixture was cooled slowly to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$; red block-shaped crystals suitable for X-ray analysis were obtained in 30% yield. Analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{CoN}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$: C 61.18, H 3.73, N 9.73\%; found: C 61.35, H 3.89, N 9.89\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$	$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=863.81$	Mo $K \alpha$ radiation
Tetragonal, P4 $1_{1} 2_{1} 2$	$\mu=0.62 \mathrm{~mm}^{-1}$
$a=12.468(3) \AA$	$T=294(2) \mathrm{K}$
$c=24.510(9) \AA$	Block, red
$V=3810.3(19) \AA^{3}$	$0.44 \times 0.28 \times 0.20 \mathrm{~mm}$
$Z=4$	
Data collection	
Bruker APEX-II CCD \quad diffractometer	20658 measured reflections
φ and ω scans	3363 independent reflections
Absorption correction: multi-scan	3105 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$R_{\text {int }}=0.038$
$\quad T_{\text {min }}=0.812, T_{\text {max }}=0.883$	

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$

863.81

Tetragonal, $P 4_{1}{ }_{2}{ }_{2} 2$
$c=24.510$ (9) \AA
$V=3810.3(19) \AA^{3}$
$Z=4$

Data collection

20658 measured reflections 3363 independent reflections 3105 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.0$

Figure 2
Part of the crystal structure of (I), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Refinement

Refinement on F^{2}

$$
w R\left(F^{2}\right)=0.063
$$

$$
S=1.04
$$

3363 reflections
267 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0406 P)^{2}\right. \\
& +0.043 P \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& \Delta \rho_{\text {max }}=0.13 \text { e } \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.26 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1364 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.034 \text { (12) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0716(14)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.1523(16)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.1520(16)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$90.19(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$93.65(6)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$86.50(6)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	$98.66(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$97.47(6)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$77.21(6)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$174.40(9)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$87.12(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	$163.61(6)$		

Symmetry code: (i) $y, x,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.22	2.901 (3)	137
N3-H3A \cdots O2	0.86	1.95	2.650 (3)	137
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 1$	0.93	2.47	3.027 (3)	119
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 3$	0.93	2.50	3.063 (3)	119
$\mathrm{C} 7-\mathrm{H} 7 \cdots 3^{\text {iii }}$	0.93	2.57	3.471 (3)	163
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.53	3.385 (3)	154
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.48	3.025 (3)	117
Symmetry codes: $x+\frac{1}{2},-y+\frac{1}{2},-z$	$x,-z ;$	$y+\frac{1}{2}$,	- $\frac{1}{4}$; (iii)	$x,-z ; \quad$ (iv)

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

metal-organic papers

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 30270877).

References

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, J. W., Chen, C. H., Liao, C. Z., Feng, X. L. \& Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370-2375.
Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. \& Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.
Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. \& Ng, S. W. (2002). Inorg. Chem. 41, 4967-4974.
Dai, P.-X., Guo, J.-H. \& Yang, E.-C. (2006). Acta Cryst. E62, m2096m2098.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

